Sunday, March 29, 2020

Electronic Banking Essays - Payment Systems, E-commerce, Banking

Electronic Banking The Electronic Banking Association (EBA) is a non-profit organization established to do one simple thing-help more people get started with electronic banking. Here's why. Who taught you how to write paper checks? Probably your parent's right? Well, who's going to teach you how to write electronic checks? Probably NOT your parents. That's where they come in. E-banking is so much more convenient and so much quicker that everyone should know about it. The EBA was established as an independent source of helpful information about electronic banking for consumers and businesses. Financial institutions, merchants, and other financial service firms actually provide financial e-commerce services, but the Electronic Banking Association (EBA) monitors progress in the financial e-commerce industry and provides information that will enable users of those services to become better informed and to locate providers of the services they seek. Everyone hates paying bills. It's time-consuming, frustrating, and you have to lick that awful envelope glue. But not with e-banking. You'll spend less time paying bills, and more time doing fun stuff. Here are some advantages to e-banking: - No more paper checks. Your computer remembers who you write checks to. You simply enter an amount then point-and-click. You'll never run out of checks again. - No more hassles. You can schedule your payments in advance, so they'll get paid while you're on vacation or away on business. Electronic payments are processed quickly, in as little as 24 hours to 5 days (unlike a paper check sent in the mail, which takes an average of 10 days to post). - No more envelopes to lick. No envelope glue. No paper cuts on your tongue. And you can stop writing your return address again, and again, and again. - No more writer's cramp. It takes forever to write checks and addresses every month. E-banking cuts that time to practically nothing. - No more stamps. With e-banking, there's no postage and your bills are processed quickly - whenever you want them paid. You can pay your bills online, so it only makes sense to receive them that way, too. This is called "Electronic Bill Presentment," and more and more businesses are going to offer it. - No more lost bills. Your dog can't eat electronic bills. Your kids can't misplace them. And you can't lose them under a stack of catalogs. - Pay bills when you want to. Not when the post office decides to deliver them. Click to see it. Click to pay it. Your bills appear right on your computer screen and look much like the printed bills you are used to getting. But the difference is you can pay them with just the click of a mouse. - Better record keeping. All your billing and payment information is kept in one convenient location, not in messy cardboard boxes or goodness only knows where else. You can pay your bills online, so it only makes sense to receive them that way, too. This is called "Electronic Bill Presentment," and more and more businesses are going to offer it. In addition to paying bills online, you can get current information any time you want it. So you can get up-to-date account balances, transfer funds, obtain information about check clearing; all sorts of things. You can import this information directly into today's popular financial management programs such as Quicken? without having to re-enter it. You buy things all the time with credit cards, right? Well then, those are electronic transactions just like these. Today's latest Web browsers have sophisticated encryption that's very secure. What's more, electronic checks are safer than having paper checks lying around where anyone can obtain and misuse your account information. Experts predict it would take a hacker over 2,000 years to crack 56-bit encryption. Yet many financial institutions today require a browser that supports 128-bit encryption, which would take about 12,710,204,652,610,000,000,000,000 years to crack. Now that's secure. (Source: Byte Magazine) When you're ready to open an e-banking account, you can receive more information on security, as well as a recent browser that supports 128-bit encryption, through your financial institution or at the Netscape and Microsoft Web sites. In the time it takes you to pay your bills the old-fashioned way, you can be up and running with e-banking. Best of all, once you enter who you pay bills to, you'll never have to re-enter that information. Your financial institution may offer e-banking via the Web or a personal financial manager or both. Web-based e-banking is generally easier and quicker to set up. All you'll need is a recent

Saturday, March 7, 2020

Sample Autobiography Translated to Spanish Essays

Sample Autobiography Translated to Spanish Essays Sample Autobiography Translated to Spanish Essay Sample Autobiography Translated to Spanish Essay Essay Topic: Autobiography of My Mother I am Mark Alexis Alaban, 18 years young. I currently live in Tanza Gua, Roxas City. I’m a third year student of the College of Business Management and Accountancy, taking Bachelor of Science in Information Technology, studying in Colegio de la Purisima Concepcion. I was born in a small town of Tanza Gua and was a farm field behind my house. I spent most of my time playing outside with the neighborhood children. In my family, I have one brother who is eleven years older than me. I really appreciate the fact that I have a stay at home mother and father. It was nice to come home to a house that was not empty. My dad is a government employee and my mom is a plain house wife. For over 18 years I have been passionate about taking pictures. It’s been my hobby and pastime. Now, I have decided to create my own corner of cyberspace to share my love of photography. My childhood consisted of a fascination of watching the environment and thats how I love to spend my time to take a snapshots. Photography is my complete existence. I spend countless hours looking at every book and image. There is nothing in my life except photography. We all have creative abilities; I was raised with no exposure to art and grew up believing that I had no talent. As for processing, I spend hours on each image until I am happy with the results. ?I didnt set out to be a photographer. It just kind of happened. ?What I can tell you are that I really love what I do and I spend a lot of time refining, perfecting and even obsessing over my work. It is a passion. ?I relish the opportunity of being at one with my surroundings and aim to capture the wonderful world around me. I love nature, I find beauty in everyday things and I enjoy. I think a photography class should be a requirement in all educational programs because it makes you see the world rather than just look at it. To capture memories that will last a lifetime even if you may not. ? ?I spent half of my life thinking that a camera was just for capturing family snapshots or recording events. Then came the day when I realized that some people use it to create art. I spent the other half of my life admiring hose people’s work, convinced that photography as an art was something beyond my reach. At the end of the day, I know my passion for this activity comes from my joy of â€Å"being one with nature† and being able to escape the daily worries and hassles of work and life. I believe a great photograph can share the experience and a great photo can â€Å"tell a thousand words† if taken properly. I suppose this is my immodest goal that I strive to reach each time I pick up my cam era and head out the door. Soy Marcos Alexis Alaban, 18 anos joven. Actualmente vivo en Tanza Gua, de Roxas City. Soy un estudiante de tercer ano de la Facultad de Administracion de Empresas y Contabilidad, teniendo Licenciatura en Ciencias en Tecnologia de la Informacion, estudiando en el Colegio de la Purisima Concepcion. Naci en un pequeno pueblo de Tanza Gua y era un campo de cultivo detras de mi casa. Pase la mayor parte de mi tiempo jugando afuera con los ninos del barrio. En mi familia, tengo un hermano que es once anos mayor que. Realmente aprecio el hecho de que tengo una estancia en la casa madre y el padre. Fue agradable volver a casa a una casa que no estaba vacio. Mi padre es un empleado del gobierno y mi madre es ama de casa normal. Desde hace mas de 18 anos he sido un apasionado de la toma de fotografias. Ha sido mi hobby y pasatiempo. Ahora, he decidido crear mi propio rincon del ciberespacio para compartir mi amor por la fotografia. Mi infancia consistio en una fascinacion de ver el medio ambiente y asi es como me gusta pasar mi tiempo para tomar unas instantaneas. La fotografia es mi existencia completa. Me paso horas y horas mirando a todos los libros y la imagen. No hay nada en mi vida, excepto la fotografia. Todos tenemos capacidades creativas; me crie sin exposicion al arte y crecio creyendo que no tenia talento. En cuanto a la transformacion, me paso horas en cada imagen hasta que este satisfecho con los resultados. Yo no tenia la intencion de ser un fotografo. Esto solo sucedio. Lo que puedo decir es que me encanta lo que hago y yo pasamos mucho tiempo refinacion, perfeccionando y hasta obsesionado con mi trabajo. Es una pasion. Me entusiasma la oportunidad de estar en armonia con mi entorno y tratar de capturar el maravilloso mundo que me rodea. Me encanta la naturaleza, encuentro la belleza en las cosas cotidianas y disfrutar yo. Creo que una clase de fotografia deberia ser un requisito en todos los programas educativos, ya que te hace ver el mundo en lugar de solo mirarlo. Para capturar recuerdos que duraran toda la vida, incluso si usted no puede. Pase la mitad de mi vida pensando que una camara era solo para la captura de instantaneas familiares o eventos de grabacion. Entonces llego el dia en que me di cuenta de que algunas personas lo utilizan para crear arte. Me pase la otra mitad de mi vida admirando el trabajo de esa gente, convencida de que la fotografia como arte era algo fuera de mi alcance. Al final del dia, se que mi pasion por esta actividad proviene de mi alegria de ser uno con la naturaleza y ser capaz de escapar de las preocupaciones diarias y los problemas de trabajo y de vida. Creo que una gran fotografia pueden compartir la experiencia y una gran foto se puede decir mas que mil palabras, si se toma correctamente. Supongo que es mi objetivo inmodesto que me esfuerzo para llegar a cada vez que cojo mi camara y la cabeza por la puerta.

Thursday, February 20, 2020

Economic development of India and China Essay Example | Topics and Well Written Essays - 1750 words

Economic development of India and China - Essay Example In the case of China, there is consensus that, in the past three decades, the country’s leadership adopted policies aimed at accumulation of wealth for rapid industrialisation and export of industrial goods (Zhijun and Jing, 2011). Prior to 1979, the country’s national planning was a catastrophe. This led to poor showing on economic scales. In India’s case, poor economic performance in the 1960s throughout 1970s has been associated with several issues including poor policies, and license-permits (Kshetri, 2011). Yet India’s poor infrastructure and lack of demand also contributed to the country’s industrial growth. The two countries adopted policies aimed at addressing their challenges, which have effectively turned around their economies since 1980s. Overview of both economies On the key economic developments in recent times, China and India occupy the first and second positions in Asia respectively (Dong et al, 2013). The two nations are by their b ig population size, global economic powerhouses. Whereas they develop the industries, it is clear that their growth will have deep impacts, not just within the countries but for the better part of the global economy. Such impacts which are already on record include; new market opportunities, stemming from improved purchasing power and higher competitiveness of the two greatest economies in Asia known for particular industrial commodities (Zhou et al, 2010; Prime et al, 2012). China and India have had very rapid economic development which has led to significant achievements, especially on poverty reduction. The two countries also experience problems arising from rapid economic development such as the increasing gap between rural and urban income earners and pollution of the environment (Das, 2012). Afan (2013) indicated that increasing incomes trigger structural transformation in the agricultural sector and food industry as the economy encounters changes in demand and consumer prefer ences. Concomitantly the effects will impact on trade, business and investment. Both global economic giants have undergone positive growth in the agricultural sector, followed by fast-developing industrial sectors and a huge slump in relative poverty. Das (2012) pointed to the difference in the preconditions and the triggering economic factors behind growth in the two countries. Massive agricultural production Both China and India have massively invested in agriculture (Dorn, 2013). The Chinese economy manifests the significant impact of agriculture on the country’s economic mix, especially in the 1980s and 1990s, when major economic reform took effect in the country (Liu, Liu, and Wei, 2005). In India, the lesser industrialized power of the two, agricultural production continues to occupy a very important part of the economy. While agriculture's portion in the Gross Domestic Product (GDP) has been on a downward trend, the industry still provides massive employment opportunit ies for the locals (Agrawal, and Khan, 2011; Bensidoun, Lemoine, and Unal, 2009). Economic contribution in this sector is undeniably of tremendous significance for prospective policies and measures aimed at the realization of the Millennium Development Goals (MDGs). This is especially true for the need to alleviate abject poverty and food insecurity in the economy by 2015 (Winters, and Yusuf, 2007; Gupta, and Wang, 2009). Appropriate economic responses China’s and India’s economic growth can be attributed to the tactful manner in which they have responded to new global adjustments such as free trade, globalization, agricultural production, rural growth and poverty alleviation (Das, 2012). The two countries

Tuesday, February 4, 2020

Personal statement Essay Example | Topics and Well Written Essays - 250 words - 8

Personal statement - Essay Example I am deeply aware that any interest in life can best translate into a real-time success only through impeccable academic credentials. My father himself built his military career on the foundation of his study at Sandhurst Academy in the UK. In line with this belief, I chose to pursue my Bachelor of Science in International Business Management at Lynn University. As a senior, I can confidently say that this is indeed what I want to do with my life. I have enjoyed all my undergraduate courses, particularly Operations, Management, Marketing and Finance. I perceive that Masters in Information Technology from a reputed university like Pace is the logical next step to open the doors to my entry into the tech industry. Right from High School, I have grabbed every opportunity to gain computer related knowledge. My internship with the Gardeniya Ladies Centre at Alkhobar, Saudi Arabia, gave me valuable exposure to customer relations. I learned that interpersonal communication is the bedrock of any commercial venture. I went on to another internship at the Click Travel Agency in Jeddah, Saudi Arabia, where I scheduled flight arrivals and departures, and honed my organizational prowess. I am confident that my internships have given me valuable skills in time management, dispute resolution and innovative packages design. At Lynn, I am a faithful and interested participant in the numerous CEO presentations on campus, absorbing the invaluable, first-hand inputs of professional businessmen and entrepreneurs. I also made use of the opportunity to be a part of the preparation for the 2012 Presidential Debate hosted at Lynn. What a learning experience that was! I believe that volunteer work is the ideal way to self-fulfillment. One of the most enriching periods of my life is the time I spent as a student volunteer at the Senior Nursing Home/ Orphanage Facility for Children at Dammam, Saudi Arabia. I was part of a social media campaign to

Monday, January 27, 2020

Modelling of Meromorphic Retina

Modelling of Meromorphic Retina CHAPTER 1 INTRODUCTION and literature review 1. INTRODUCTION The world depends on how we sense it; perceive it and how we act is according to our perception of this world. But where from this perception comes? Leaving the psychological part, we perceive by what we sense and act by what we perceive. The senses in humans and other animals are the faculties by which outside information is received for evaluation and response. Thus the actions of humans depend on what they sense. Aristotle divided the senses into five, namely: Hearing, Sight, Smell, Taste and Touch. These have continued to be regarded as the classical five senses, although scientists have determined the existence of as many as 15 additional senses. Sense organs buried deep in the tissues of muscles, tendons, and joints, for example, give rise to sensations of weight, position of the body, and amount of bending of the various joints; these organs are called proprioceptors. Within the semicircular canal of the ear is the organ of equilibrium, concerned with the sense of balance. General senses, which produce information concerning bodily needs (hunger, thirst, fatigue, and pain), are also recognized. But the foundation of all these is still the list of five that was given by Aristotle. Our world is a visual world. Visual perception is by far the most important sensory process by which we gather and extract information from our environment. Vision is the ability to see the features of objects we look at, such as color, shape, size, details, depth, and contrast. Vision is achieved when the eyes and brain work together to form pictures of the world around us. Vision begins with light rays bouncing off the surface of objects. Light reflected from objects in our world forms a very rich source of information and data. The light reflected has a short wavelength and high transmission speed that allow us a spatially accurate and fast localization of reflecting surfaces. The spectral variations in wavelength and intensity in the reflected light resemble the physical properties of object surfaces, and provide means to recognize them. The sources that light our world are usually inhomogeneous. The sun, our natural light source, for example, is in good approximation a point sou rce. Inhomogeneous light sources cause shadows and reflections that are highly correlated with the shape of objects. Thus, knowledge of the spatial position and extent of the light source enables further extraction of information about our environment. Our world is also a world of motion. We and most other animals are moving creatures. We navigate successfully through a dynamic environment, and we use predominantly visual information to do so. A sense of motion is crucial for the perception of our own motion in relation to other moving and static objects in the environment. We must predict accurately the relative dynamics of objects in the environment in order to plan appropriate actions. Take for example the following situation that illustrates the nature of such a perceptual task: the batsman a cricket team is facing a bowler. In order to get the boundary on the ball, he needs an accurate estimate of the real motion trajectory of the ball such that he can precisely plan and orchestrate his body movements to hit the ball. There is little more than just visual information available to him in order to solve the task. And once he is in motion the situation becomes much more complicated because visual motion information now represents the relative motion between him and the ball while the important coordinate frame remains static. Yet, despite its difficulty, with appropriate training some of us become astonishingly good at performing this task. High performance is important because we live in a highly competitive world. The survival of the fittest applies to us as to any other living organism, although the fields of competition might have slightly shifted and diverted during recent evolutionary trends. This competitive pressure not only promotes a visual motion perception system that can determine quickly what is moving where, in which direction, and at what speed; but it also forces this system to be efficient. Efficiency is crucial in biological systems. It encourages solutions that consume the smallest amount of resources of time, substrate, and energy. The requirement for efficiency is advantageous because it drives the system to be quicker, to go further, to last longer, and to have more resources left to solve and perform other tasks at the same time. Thus, being the complex sensory-motor system as the batsman is, he cannot dedicate all of the resources available to solve a single task. Compared to human perceptual abilities, nature provides us with even more astonishing examples of efficient visual motion perception. Consider the various flying insects that navigate by visual perception. They weigh only fractions of grams, yet they are able to navigate successfully at high speeds through complicated environments in which they must resolve visual motions up to 2000 deg/s. 1.1 ARTIFICIAL SYSTEMS What applies to biological systems applies also to a large extent to any artificial autonomous system that behaves freely in a real-world environment. When humankind started to build artificial autonomous systems, it was commonly accepted that such systems would become part of our everyday life by the year 2001. Numberless science-fiction stories and movies have encouraged visions of how such agents should behave and interfere with human society. And many of these scenarios seem realistic and desirable. Briefly, we have a rather good sense of what these agents should be capable of. But the construction is still eluding. The semi- autonomous rover of NASAs recent Mars missions or demonstrations of artificial pets are the few examples. Remarkably the progress in this field is slow than the other fields of electronics. Unlike transistor technology in which explosion of density is defined by the Moores law and also in terms of the computational powers the performance of autonomous systems is still not to the par. To find out the reason behind it we have to understand the limitation of traditional approaches. The autonomous system is the one that perceives, takes decision and plans action at a cognitive level, in doing so it must show some degree of intelligence. Returning back to the batsman example, he knows exactly what he has to do to dispatch the ball to the boundary, he has to get into a right position and then hit the ball with a precise timing. In this process, the photons hit the retina and then muscle force is applied. The batsman is not aware that this much is going on into his body. The batsman has a nervous system, and one of its many functions is to instantiate a transformation layerbetween the environme nt and his cognitive mind. The brain reduces and preprocesses the huge amount of noisy sensory data, categorizes and extracts the relevant information, and translates it into a form that is accessible to cognitive reasoning. Thus it is clear here that the there is cluster of process that takes place in a biological cognitive system in a very short time duration. And also that an important part of this whole process is transduction although it is not the one that can solely perform the whole complex task. Thus perception is the interpretationof sensory information with respect to the perceptual goal. The process is shown in the fig-1. 1.2 DIFFERENCE BETWEEN BIOLOGICAL SYSTEMS AND COMPUTERS The brain is fundamentally differently organized than a computer and science is still a long way from understanding how the whole thing works. A computer is really easy to understand by comparison. Features (or organization principles) that clearly distinguish a brain from a computer are: Massive parallelism, Distributed storage, Asynchronous processing, and Self organization. The computer is still a basically serially driven machine with a centralized storage and minimal self organization. The table 1.1 enlists these differences. Table 1.1 Differences in the organization principles and operation of computer and brain The digital computation may become so fast that it may solve the present problems and also it may become possible that the autonomous systems are made by digital components that are as powerful as efficient and as intelligent as we may imagine in our wildest dreams. However there are doubts in it and so we have to switch to an implementation framework that can realize all these things. 1.3 NEURAL COMPUTATIONS WITH THE HELP OF ANALOG INTEGRATED CIRCUITS It was Carver Mead who, inspired by the course â€Å"The Physics of Computation† he jointly taught with John Hopfield and Richard Feynman at Caltech in 1982, first proposed the idea of embodying neural computation in silicon analog very large-scale integrated (aVLSI) circuits. Biological neural networks are examples of wonderfully engineered and efficient computational systems. When researchers first began to develop mathematical models for how nervous systems actually compute and process information, they very soon realized that one of the main reasons for the impressive computational power and efficiency of neural networks is the collective computation that takes place among their highly connected neurons. And in researches, it is also well established that these computations are not undertaken digitally although the digital way is much simpler. Real neurons have a cell membrane with a capacitance that acts as a low-pass filter to the incoming signal through its dendrites; they have dendritic trees that non-linearly add signals from other neurons, and so forth. Network structure and analog processing seem to be two key properties of nervous systems providing them with efficiency and computational power, but nonetheless two properties that digital compute rs typically do not share or exploit. 1.4 LITERATURE REVIEW 1. Biological information-processing systems operate on completely different principles from those with which most engineers are familiar. For many problems, particularly those in which the input data are ill-conditioned and the computation can be specified in a relative manner, biological solutions are many orders of magnitude more effective than those we have been able to implement using digital methods. This advantage can be attributed principally to the use of elementary physical phenomena as computational primitives, and to the representation of information by the relative values of analog signals, rather than by the absolute values of digital signals. This approach requires adaptive techniques to mitigate the effects of component differences. This kind of adaptation leads naturally to systems that learn about their environment. Large-scale adaptive analog systems are more robust to component degradation and failure than are more conventional systems, and they use far less power . For this reason, adaptive analog technology can be expected to utilize the full potential of wafer scale silicon fabrication 2. The architecture and realization of microelectronic components for a retina-implant system that will provide visual sensations to patients suffering from photoreceptor degeneration. Special circuitry has been developed for a fast single-chip CMOS image sensor system, which provides high dynamic range of more than seven decades (without any electronic or mechanical shutter) corresponding to the performance of the human eye. This image sensor system is directly coupled to a digital filter and a signal processor that compute the so-called receptive-field function for generation of the stimulation data. These external components are wireless, linked to an implanted flexible silicon multielectrode stimulator, which generates electrical signals for electro stimulation of the intact ganglion cells. All components, including additional hardware for digital signal processing and wireless data and power transmission, have been fabricated using in-house standard CMOS technology 3. The circuits inspired by the nervous system that either help verifying neuron physiological models, or that are useful components in artificial perception/action systems. Research also aims at using them in implants. These circuits are computational devices and intelligent sensors that are very differently organized than digital processors. Their storage and processing capacity is distributed. They are asynchronous and use no clock signal. They are often purely analog and operate time continuous. They are adaptive or can even learn on a basic level instead of being programmed. A short introduction into the area of brain research is also included in the course. The students will learn to exploit mechanisms employed by the nervous system for compact energy efficient analog integrated circuits. They will get insight into a multidisciplinary research area. The students will learn to analyze analog CMOS circuits and acquire basic knowledge in brain research methods. 4. Smart vision systems will be an inevitable component of future intelligent systems. Conventional vision systems, based on the system level integration (or even chip level integration) of an image (usually a CCD) camera and a digital processor, do not have the potential for application in general purpose consumer electronic products. This is simply due to the cost, size, and complexity of these systems. Because of these factors conventional vision systems have mainly been limited to specific industrial and military applications. Vision chips, which include both the photo sensors and parallel processing elements (analog or digital), have been under research for more than a decade and illustrate promising capabilities. 5. Dr. Carver Mead, professor emeritus of California Institute of Technology (Caltech), Pasadena pioneered this field. He reasoned that biological evolutionary trends over millions of years have produced organisms that engineers can study to develop better artificial systems. By giving senses and sensory-based behavior to machines, these systems can possibly compete with human senses and brings an intersection between biology, computer science and electrical engineering. Analog circuits, electrical circuits operated with continuous varying signals, are used to implement these algorithmic processes with transistors operated in the sub-threshold or weak inversion region (a region of operation in which transistors are designed to conduct current though the gate voltage is slightly lower than the minimum voltage, called threshold voltage, required for normal conduction to take place) where they exhibit exponential current voltage characteristics and low currents. This circuit paradigm pr oduces high density and low power implementations of some functions that are computationally intensive when compared with other paradigms (triode and saturation operational regions). {A triode region is operating transistor with gate voltage above the threshold voltage but with the drain-source voltage lower than the difference between the gate-source voltage and threshold voltage. For saturation region, the gate voltage is still above the threshold voltage but with the drain-source voltage above the difference between the gate-source voltage and threshold voltage. Transistor has four terminals: drain, gate, source and bulk. Current flows between the drain and the source when enough voltage is applied through the gate that enables conduction. The bulk is the body of the transistor.}. As the systems mature, human parts replacements would become a major application area of the Neuromorphic electronics. The fundamental principle is by observing how biological systems perform these func tions robust artificial systems are designed. 6. In This proposed work a circuit level model of Neuromorphic Retina, this is a crude electronic model of biologically inspired smart visual sensors. These visual sensors have integrated image acquisition and parallel processing. Having these features neuromorphic retina mimics the neural circuitry of bionic eye. The proposed electronic model contains adaptive photoreceptors as light sensors and other circuit components such as averaging circuits, circuits representing ganglion cells, neuronal firing circuits etc that junction to sense brightness, size, orientation and shape to distinguish objects in closer proximity. Although image-processing features are available with modern robots but most of the issues related to image processing are taken care by software resources. Whereas machine vision with the help of neuromorphic retina is empowered with image processing at the front end. With added hardware resources, processing at the front end can reduce a lot of engineering resources for making electronic devices with sense of vision. 1.5 OBJECTIVES OF THE PRESENT WORK This project work describes a circuit level model of Neuromorphic Retina, which is a crude electronic model of biologically inspired smart visual sensors. These visual sensors have integrated image acquisition and parallel processing. Having these features neuromorphic retina mimics the neural circuitry of bionic eye. The proposed electronic model contains adaptive photoreceptors as light sensors and other neural firing circuits etc at junction to sense brightness, size, orientation and shape to distinguish objects in closer proximity. Although, image processing features are available with modern robots but most of the issues related to image processing are taken care by software resources. Whereas, machine vision with the help of neuromorphic retina is empowered with image processing at the front end. In this paper it has been shown that with added hardware resources, processing at the front end it can reduce a lot of engineering resources as well as time for making electronic devic es with sense of vision. . The objectives of present work are: Modelling of Neuromorphic Retina The photoreceptor block The horrizontal cell block The transistor mesh implemented with cmos technology The integerated block The integrated block of prs, horizontal cells and bipolar cells The spike generation circuit 1.6 Concluding Remarks In this chapter, the function of the artificial system, difference between brain and computer work is described. The present work is focused on designing of neuromorphic retina layer circuits. Many successful studies have been carried out by the researchers to study the behavior and failure of neuromorphic retina. Some investigators have performed the experimental work to study the phenomenon of the neuromorphic retina. Chapter 2 conations the biological neurons and the electronics of neuromorphic retina in this the descriptions of silicon neurons, electrical nodes as neurons, perceptrons, integrate fire neurons, biological significance of neuromorphic systems, neuromorphic electronics engineering methods, process of developing a neuromorphic chip. Chapter 3 describes the artificial silicon retina, physiology of vision, the retina, photon to electrons, why we require the neuromorphic retina?, the equivalent electronic structure, visual path to brain. In chapter 4 designing and implementation of neuromorphic retina in this the description of the photoreceptor block, the horrizontal cell block, the integerated block, the integrated block of photoreceptors, horizontal cells and bipolar cells, the spike generation circuit. In chapter 5 the design analyses and test results of neuromorphic retina layers. The results are summarized in the form of conclusion in Chapter 6 CHAPTER-2 BIOLOGICAL neurons AND neuromorphic electronics 2.1 INTRODUCTION Neuromorphic systems are inspired by the structure, function and plasticity of biological nervous systems. They are artificial neural systems that mimic algorithmic behavior of the biological animal systems through efficient adaptive and intelligent control techniques. They are designed to adapt, learn from their environments, and make decisions like biological systems and not to perform better than them. There are no efforts to eliminate deficiencies inherent in biological systems. This field, called Neuromorphic engineering, is evolving a new era in computing with a great promise for future medicine, healthcare delivery and industry. It relies on plenty of experiences which nature offers to develop functional, reliable and effective artificial systems. Neuromorphic computational circuits, designed to mimic biological neurons, are primitives based on the optical and electronic properties of semiconductor materials 2.1 BIOLOGICAL NEURONS Biological neurons have a fairly simple large-scale structure, although their operation and small-scale structure is immensely complex. Neurons have three main parts: a central cell body, called the soma, and two different types of branched, treelike structures that extend from the soma, called dendrites and axons. Information from other neurons, in the form of electrical impulses, enters the dendrites at connection points called synapses. The information flows from the dendrites to the soma, where it is processed. The output signal, a train of impulses, is then sent down the axon to the synapses of other neurons. The dendrites send impulses to the soma while the axon sends impulses away from the soma. Functionally, there are three different types of neurons: Sensory neurons They carry information from sense receptors (nerves that help us see, smell, hear taste and feel) to the central nervous system which includes the brain and the spinal cord. Motor neurons They carry information from the CNS to effectors (muscles or glands that release all kind of stuff, from water to hormones to ear wax) Interneuron They connect sensory neurons and motor neurons. It has a cell body (or soma) and root-like extensions called mygdale. Amongst the mygdale, one major outgoing trunk is the axon, and the others are dendrites. The signal processing capabilities of a neuron is its ability to vary its intrinsic electrical potential (membrane potential) through special electro-physical and chemical processes. The portion of axon immediately adjacent to the cell body is called axon hillock. This is the point at which action potentials are usually generated. The branches that leave the main axon are often called collaterals. Certain types of neurons have axons or dendrites coated with a fatty insulating substance called myelin. The coating is called the myelin sheath and the fiber is said to be myelinated. In some cases, the myelin sheath is surrounded by another insulating layer, sometimes called neurilemma. This layer, thinner than the myelin sheath and continuous over the nodes of Ranvier, is made up o thin cells called Schwann cells. Now, how do these things work? Inside and just outside of the neurons are sodium ions (Na+) and potassium ions (K+). Normally, when the neuron is just sitting not sending any messages, K+ accumulate inside the neuron while Na+ is kicked out to the area just outside the neuron. Thus, there is a lot of K+ in the neuron and a lot of Na+ just outside of it. This is called the resting potential. Keeping the K+ in and the Na+ is not easy; it requires energy from the body to work. An impulse coming in from the dendrites, reverses this balance, causing K+ to leave the neuron and Na+ to come in. This is known as depolarization. As K+ leave Na+ enter the neuron, energy is released, as the neuron no longer is doing any work to keep K+ in and Na+ out. This energycreates an electrical impulse or action potential that is transmitted from the soma to axon. As the impulse leaves the axon, the neuron repolarizes, that is it takes K+ back in and kicks Na+ out and restores itself to resting potential, ready to send another impulse. This process occurs extremely quickly. A neuron theoretically can send roughly 266 messages in one second. The electrical impulse may stimulate other neurons from its synaptic knobs to propagate the message. Experiments have shown that the membrane voltage variation during the generation of an action potential is generally in a form of a spike (a short pulse figure 2.2), and the shape of this pulse in neurons is rather stereotype and mathematically predictable. 2.2 SILICON NEURONS Neuromorphic engineers are more interested in the physiological rather than the anatomical model of a neuron though, which is concerned with the functionality rather than only classifying its parts. And their preference lies with models that can be realized in aVLSI circuits. Luckily many of the models of neurons have always been formulated as electronic circuits since many of the varying observables in biological neurons are voltages and currents. So it was relatively straight forward to implement them in VLSI electronic circuits. There exist now many aVLSI models of neurons which can be classified by their level of detail that is represented in them. A summary can be found in table 3.1. The most detailed ones are known as ‘silicon neurons. A bit cruder on the level of detail are ‘integrate and fire neurons and even more simplifying are ‘Perceptrons also known as ‘Mc Culloch Pitts neurons. The simplest way however of representing a neuron in electronics is to represent neurons as electrical nodes. Table 2.1 VLSI models of neurons 2.2.1 Electrical Nodesasneurons The most simple of all neuronal models is to just represent a neurons activity by a voltage or a current in an electrical circuit, and input and output are identical, with no transfer function in-between. If a voltage node represents a neuron, excitatory bidirectional connections can be realized simply by resistive elements between the neurons. If you want to add the possibility for inhibitory and mono directional connections, followers can be used instead of resistors. Or if a current represents neuronal activity then a simple current mirror can implement a synapse. Many useful processing networks can be implemented in this manner or in similar ways. For example a resistive network can compute local averages of current inputs. 2.2.2 Perceptrons A perceptron is a simple mathematical model of a neuron. As real neurons it is an entity that is connected to others of its kind by one output and several inputs. Simple signals pass through these connections. In the case of the perceptron these signals are not action potentials but real numbers. To draw the analogy to real neurons these numbers may represent average frequencies of action potentials. The output of a perceptron is a monotonic function (referred to as activation function) of the weighted sum of its inputs (see figure 3.3). Perceptrons are not so much implemented in analog hardware. They have originally been formulated as a mathematical rather than an electronic model and traditional computers are good at those whereas it is not so straight forward to implement simple mathematics into aVLSI. Still there exist aVLSI implementations of perceptrons since they still promise the advantage of a real fully parallel, energy and space conservative implementation. A simple aVLSI implementation of a perceptron is given in the schematics in figure 3.4. This particular implementation works well enough in theory, in practice however it is on one hand not flexible enough (particularly the activation function), on the other already difficult to tune by its bias voltages and prone to noise on the a chip. Circuits that have really been used are based on this one but were more extensive to deal with the problems. 2.2.3 Integrate Fire Neurons This model of a neuron sticks closer to the original in terms of its signals. Its output and its inputs are pulse signals. In terms of frequencies it actually can be modeled by a perceptron and vice versa. It is however much better suited to be implemented in aVLSI. And the spike communication also has distinct advantages in noise robustness. That is also thought to be a reason, why the nervous system uses that kind of communication. An integrate and fire neuron integrates weighted charge inputs triggered by presynaptic action potentials. If the integrated voltage reaches a threshold, the neuron fires a short output pulse and the integrator is reset. These basic properties are depicted in figure 2.5. 2.3 BIOLOGICAL SIGNIFICANCE OF NEUROMORPHIC SYSTEMS The fundamental philosophy of neuromorphic engineering is to utilize algorithmic inspiration of biological systems to engineer artificial systems. It is a kind of technology transfer from biology to engineering that involves the understanding of the functions and forms of the biological systems and consequent morphinginto silicon chips. The fundamental biological unit mimicked in the design of neuromorphic systems is the neurons. Animal brain is composed of these individual units of computation, called neurons and the neurons are the elementary signaling parts of the nervous systems. By examining the retina for instance, artificial neurons that mimic the retinal neurons and chemistry are fabricated on silicon (most common material), gallium arsenide (GaAs) or possibly prospective organic semiconductor materials. 2.4 NEUROMORPHIC ELECTRONICS ENGINEERING METHODS Neuromorphic systems design methods involves the mapping of models of perfection and sensory processing in biological systems onto analog VLSI systems which emulate the biological functions at the same time resembling their structural architecture. These systems are mainly designed with complementary metal oxide semiconductors (CMOS) transistors that enable low power consumption, higher chip density and integration, lower cost. These transistors are biased to operate in the sub-threshold region to enable the realizations of high dynamic range of currents which are very important for neural systems design. Elements of adaptation and learning (a sort of higher level of adaptation in which past experience is used to effectively readjust the response of a system to previously unseen input stimuli) are incorporated into neuromorphic systems since they are expected to emulate the behavior of the biological systems and compensate for imperfections in t Modelling of Meromorphic Retina Modelling of Meromorphic Retina CHAPTER 1 INTRODUCTION and literature review 1. INTRODUCTION The world depends on how we sense it; perceive it and how we act is according to our perception of this world. But where from this perception comes? Leaving the psychological part, we perceive by what we sense and act by what we perceive. The senses in humans and other animals are the faculties by which outside information is received for evaluation and response. Thus the actions of humans depend on what they sense. Aristotle divided the senses into five, namely: Hearing, Sight, Smell, Taste and Touch. These have continued to be regarded as the classical five senses, although scientists have determined the existence of as many as 15 additional senses. Sense organs buried deep in the tissues of muscles, tendons, and joints, for example, give rise to sensations of weight, position of the body, and amount of bending of the various joints; these organs are called proprioceptors. Within the semicircular canal of the ear is the organ of equilibrium, concerned with the sense of balance. General senses, which produce information concerning bodily needs (hunger, thirst, fatigue, and pain), are also recognized. But the foundation of all these is still the list of five that was given by Aristotle. Our world is a visual world. Visual perception is by far the most important sensory process by which we gather and extract information from our environment. Vision is the ability to see the features of objects we look at, such as color, shape, size, details, depth, and contrast. Vision is achieved when the eyes and brain work together to form pictures of the world around us. Vision begins with light rays bouncing off the surface of objects. Light reflected from objects in our world forms a very rich source of information and data. The light reflected has a short wavelength and high transmission speed that allow us a spatially accurate and fast localization of reflecting surfaces. The spectral variations in wavelength and intensity in the reflected light resemble the physical properties of object surfaces, and provide means to recognize them. The sources that light our world are usually inhomogeneous. The sun, our natural light source, for example, is in good approximation a point sou rce. Inhomogeneous light sources cause shadows and reflections that are highly correlated with the shape of objects. Thus, knowledge of the spatial position and extent of the light source enables further extraction of information about our environment. Our world is also a world of motion. We and most other animals are moving creatures. We navigate successfully through a dynamic environment, and we use predominantly visual information to do so. A sense of motion is crucial for the perception of our own motion in relation to other moving and static objects in the environment. We must predict accurately the relative dynamics of objects in the environment in order to plan appropriate actions. Take for example the following situation that illustrates the nature of such a perceptual task: the batsman a cricket team is facing a bowler. In order to get the boundary on the ball, he needs an accurate estimate of the real motion trajectory of the ball such that he can precisely plan and orchestrate his body movements to hit the ball. There is little more than just visual information available to him in order to solve the task. And once he is in motion the situation becomes much more complicated because visual motion information now represents the relative motion between him and the ball while the important coordinate frame remains static. Yet, despite its difficulty, with appropriate training some of us become astonishingly good at performing this task. High performance is important because we live in a highly competitive world. The survival of the fittest applies to us as to any other living organism, although the fields of competition might have slightly shifted and diverted during recent evolutionary trends. This competitive pressure not only promotes a visual motion perception system that can determine quickly what is moving where, in which direction, and at what speed; but it also forces this system to be efficient. Efficiency is crucial in biological systems. It encourages solutions that consume the smallest amount of resources of time, substrate, and energy. The requirement for efficiency is advantageous because it drives the system to be quicker, to go further, to last longer, and to have more resources left to solve and perform other tasks at the same time. Thus, being the complex sensory-motor system as the batsman is, he cannot dedicate all of the resources available to solve a single task. Compared to human perceptual abilities, nature provides us with even more astonishing examples of efficient visual motion perception. Consider the various flying insects that navigate by visual perception. They weigh only fractions of grams, yet they are able to navigate successfully at high speeds through complicated environments in which they must resolve visual motions up to 2000 deg/s. 1.1 ARTIFICIAL SYSTEMS What applies to biological systems applies also to a large extent to any artificial autonomous system that behaves freely in a real-world environment. When humankind started to build artificial autonomous systems, it was commonly accepted that such systems would become part of our everyday life by the year 2001. Numberless science-fiction stories and movies have encouraged visions of how such agents should behave and interfere with human society. And many of these scenarios seem realistic and desirable. Briefly, we have a rather good sense of what these agents should be capable of. But the construction is still eluding. The semi- autonomous rover of NASAs recent Mars missions or demonstrations of artificial pets are the few examples. Remarkably the progress in this field is slow than the other fields of electronics. Unlike transistor technology in which explosion of density is defined by the Moores law and also in terms of the computational powers the performance of autonomous systems is still not to the par. To find out the reason behind it we have to understand the limitation of traditional approaches. The autonomous system is the one that perceives, takes decision and plans action at a cognitive level, in doing so it must show some degree of intelligence. Returning back to the batsman example, he knows exactly what he has to do to dispatch the ball to the boundary, he has to get into a right position and then hit the ball with a precise timing. In this process, the photons hit the retina and then muscle force is applied. The batsman is not aware that this much is going on into his body. The batsman has a nervous system, and one of its many functions is to instantiate a transformation layerbetween the environme nt and his cognitive mind. The brain reduces and preprocesses the huge amount of noisy sensory data, categorizes and extracts the relevant information, and translates it into a form that is accessible to cognitive reasoning. Thus it is clear here that the there is cluster of process that takes place in a biological cognitive system in a very short time duration. And also that an important part of this whole process is transduction although it is not the one that can solely perform the whole complex task. Thus perception is the interpretationof sensory information with respect to the perceptual goal. The process is shown in the fig-1. 1.2 DIFFERENCE BETWEEN BIOLOGICAL SYSTEMS AND COMPUTERS The brain is fundamentally differently organized than a computer and science is still a long way from understanding how the whole thing works. A computer is really easy to understand by comparison. Features (or organization principles) that clearly distinguish a brain from a computer are: Massive parallelism, Distributed storage, Asynchronous processing, and Self organization. The computer is still a basically serially driven machine with a centralized storage and minimal self organization. The table 1.1 enlists these differences. Table 1.1 Differences in the organization principles and operation of computer and brain The digital computation may become so fast that it may solve the present problems and also it may become possible that the autonomous systems are made by digital components that are as powerful as efficient and as intelligent as we may imagine in our wildest dreams. However there are doubts in it and so we have to switch to an implementation framework that can realize all these things. 1.3 NEURAL COMPUTATIONS WITH THE HELP OF ANALOG INTEGRATED CIRCUITS It was Carver Mead who, inspired by the course â€Å"The Physics of Computation† he jointly taught with John Hopfield and Richard Feynman at Caltech in 1982, first proposed the idea of embodying neural computation in silicon analog very large-scale integrated (aVLSI) circuits. Biological neural networks are examples of wonderfully engineered and efficient computational systems. When researchers first began to develop mathematical models for how nervous systems actually compute and process information, they very soon realized that one of the main reasons for the impressive computational power and efficiency of neural networks is the collective computation that takes place among their highly connected neurons. And in researches, it is also well established that these computations are not undertaken digitally although the digital way is much simpler. Real neurons have a cell membrane with a capacitance that acts as a low-pass filter to the incoming signal through its dendrites; they have dendritic trees that non-linearly add signals from other neurons, and so forth. Network structure and analog processing seem to be two key properties of nervous systems providing them with efficiency and computational power, but nonetheless two properties that digital compute rs typically do not share or exploit. 1.4 LITERATURE REVIEW 1. Biological information-processing systems operate on completely different principles from those with which most engineers are familiar. For many problems, particularly those in which the input data are ill-conditioned and the computation can be specified in a relative manner, biological solutions are many orders of magnitude more effective than those we have been able to implement using digital methods. This advantage can be attributed principally to the use of elementary physical phenomena as computational primitives, and to the representation of information by the relative values of analog signals, rather than by the absolute values of digital signals. This approach requires adaptive techniques to mitigate the effects of component differences. This kind of adaptation leads naturally to systems that learn about their environment. Large-scale adaptive analog systems are more robust to component degradation and failure than are more conventional systems, and they use far less power . For this reason, adaptive analog technology can be expected to utilize the full potential of wafer scale silicon fabrication 2. The architecture and realization of microelectronic components for a retina-implant system that will provide visual sensations to patients suffering from photoreceptor degeneration. Special circuitry has been developed for a fast single-chip CMOS image sensor system, which provides high dynamic range of more than seven decades (without any electronic or mechanical shutter) corresponding to the performance of the human eye. This image sensor system is directly coupled to a digital filter and a signal processor that compute the so-called receptive-field function for generation of the stimulation data. These external components are wireless, linked to an implanted flexible silicon multielectrode stimulator, which generates electrical signals for electro stimulation of the intact ganglion cells. All components, including additional hardware for digital signal processing and wireless data and power transmission, have been fabricated using in-house standard CMOS technology 3. The circuits inspired by the nervous system that either help verifying neuron physiological models, or that are useful components in artificial perception/action systems. Research also aims at using them in implants. These circuits are computational devices and intelligent sensors that are very differently organized than digital processors. Their storage and processing capacity is distributed. They are asynchronous and use no clock signal. They are often purely analog and operate time continuous. They are adaptive or can even learn on a basic level instead of being programmed. A short introduction into the area of brain research is also included in the course. The students will learn to exploit mechanisms employed by the nervous system for compact energy efficient analog integrated circuits. They will get insight into a multidisciplinary research area. The students will learn to analyze analog CMOS circuits and acquire basic knowledge in brain research methods. 4. Smart vision systems will be an inevitable component of future intelligent systems. Conventional vision systems, based on the system level integration (or even chip level integration) of an image (usually a CCD) camera and a digital processor, do not have the potential for application in general purpose consumer electronic products. This is simply due to the cost, size, and complexity of these systems. Because of these factors conventional vision systems have mainly been limited to specific industrial and military applications. Vision chips, which include both the photo sensors and parallel processing elements (analog or digital), have been under research for more than a decade and illustrate promising capabilities. 5. Dr. Carver Mead, professor emeritus of California Institute of Technology (Caltech), Pasadena pioneered this field. He reasoned that biological evolutionary trends over millions of years have produced organisms that engineers can study to develop better artificial systems. By giving senses and sensory-based behavior to machines, these systems can possibly compete with human senses and brings an intersection between biology, computer science and electrical engineering. Analog circuits, electrical circuits operated with continuous varying signals, are used to implement these algorithmic processes with transistors operated in the sub-threshold or weak inversion region (a region of operation in which transistors are designed to conduct current though the gate voltage is slightly lower than the minimum voltage, called threshold voltage, required for normal conduction to take place) where they exhibit exponential current voltage characteristics and low currents. This circuit paradigm pr oduces high density and low power implementations of some functions that are computationally intensive when compared with other paradigms (triode and saturation operational regions). {A triode region is operating transistor with gate voltage above the threshold voltage but with the drain-source voltage lower than the difference between the gate-source voltage and threshold voltage. For saturation region, the gate voltage is still above the threshold voltage but with the drain-source voltage above the difference between the gate-source voltage and threshold voltage. Transistor has four terminals: drain, gate, source and bulk. Current flows between the drain and the source when enough voltage is applied through the gate that enables conduction. The bulk is the body of the transistor.}. As the systems mature, human parts replacements would become a major application area of the Neuromorphic electronics. The fundamental principle is by observing how biological systems perform these func tions robust artificial systems are designed. 6. In This proposed work a circuit level model of Neuromorphic Retina, this is a crude electronic model of biologically inspired smart visual sensors. These visual sensors have integrated image acquisition and parallel processing. Having these features neuromorphic retina mimics the neural circuitry of bionic eye. The proposed electronic model contains adaptive photoreceptors as light sensors and other circuit components such as averaging circuits, circuits representing ganglion cells, neuronal firing circuits etc that junction to sense brightness, size, orientation and shape to distinguish objects in closer proximity. Although image-processing features are available with modern robots but most of the issues related to image processing are taken care by software resources. Whereas machine vision with the help of neuromorphic retina is empowered with image processing at the front end. With added hardware resources, processing at the front end can reduce a lot of engineering resources for making electronic devices with sense of vision. 1.5 OBJECTIVES OF THE PRESENT WORK This project work describes a circuit level model of Neuromorphic Retina, which is a crude electronic model of biologically inspired smart visual sensors. These visual sensors have integrated image acquisition and parallel processing. Having these features neuromorphic retina mimics the neural circuitry of bionic eye. The proposed electronic model contains adaptive photoreceptors as light sensors and other neural firing circuits etc at junction to sense brightness, size, orientation and shape to distinguish objects in closer proximity. Although, image processing features are available with modern robots but most of the issues related to image processing are taken care by software resources. Whereas, machine vision with the help of neuromorphic retina is empowered with image processing at the front end. In this paper it has been shown that with added hardware resources, processing at the front end it can reduce a lot of engineering resources as well as time for making electronic devic es with sense of vision. . The objectives of present work are: Modelling of Neuromorphic Retina The photoreceptor block The horrizontal cell block The transistor mesh implemented with cmos technology The integerated block The integrated block of prs, horizontal cells and bipolar cells The spike generation circuit 1.6 Concluding Remarks In this chapter, the function of the artificial system, difference between brain and computer work is described. The present work is focused on designing of neuromorphic retina layer circuits. Many successful studies have been carried out by the researchers to study the behavior and failure of neuromorphic retina. Some investigators have performed the experimental work to study the phenomenon of the neuromorphic retina. Chapter 2 conations the biological neurons and the electronics of neuromorphic retina in this the descriptions of silicon neurons, electrical nodes as neurons, perceptrons, integrate fire neurons, biological significance of neuromorphic systems, neuromorphic electronics engineering methods, process of developing a neuromorphic chip. Chapter 3 describes the artificial silicon retina, physiology of vision, the retina, photon to electrons, why we require the neuromorphic retina?, the equivalent electronic structure, visual path to brain. In chapter 4 designing and implementation of neuromorphic retina in this the description of the photoreceptor block, the horrizontal cell block, the integerated block, the integrated block of photoreceptors, horizontal cells and bipolar cells, the spike generation circuit. In chapter 5 the design analyses and test results of neuromorphic retina layers. The results are summarized in the form of conclusion in Chapter 6 CHAPTER-2 BIOLOGICAL neurons AND neuromorphic electronics 2.1 INTRODUCTION Neuromorphic systems are inspired by the structure, function and plasticity of biological nervous systems. They are artificial neural systems that mimic algorithmic behavior of the biological animal systems through efficient adaptive and intelligent control techniques. They are designed to adapt, learn from their environments, and make decisions like biological systems and not to perform better than them. There are no efforts to eliminate deficiencies inherent in biological systems. This field, called Neuromorphic engineering, is evolving a new era in computing with a great promise for future medicine, healthcare delivery and industry. It relies on plenty of experiences which nature offers to develop functional, reliable and effective artificial systems. Neuromorphic computational circuits, designed to mimic biological neurons, are primitives based on the optical and electronic properties of semiconductor materials 2.1 BIOLOGICAL NEURONS Biological neurons have a fairly simple large-scale structure, although their operation and small-scale structure is immensely complex. Neurons have three main parts: a central cell body, called the soma, and two different types of branched, treelike structures that extend from the soma, called dendrites and axons. Information from other neurons, in the form of electrical impulses, enters the dendrites at connection points called synapses. The information flows from the dendrites to the soma, where it is processed. The output signal, a train of impulses, is then sent down the axon to the synapses of other neurons. The dendrites send impulses to the soma while the axon sends impulses away from the soma. Functionally, there are three different types of neurons: Sensory neurons They carry information from sense receptors (nerves that help us see, smell, hear taste and feel) to the central nervous system which includes the brain and the spinal cord. Motor neurons They carry information from the CNS to effectors (muscles or glands that release all kind of stuff, from water to hormones to ear wax) Interneuron They connect sensory neurons and motor neurons. It has a cell body (or soma) and root-like extensions called mygdale. Amongst the mygdale, one major outgoing trunk is the axon, and the others are dendrites. The signal processing capabilities of a neuron is its ability to vary its intrinsic electrical potential (membrane potential) through special electro-physical and chemical processes. The portion of axon immediately adjacent to the cell body is called axon hillock. This is the point at which action potentials are usually generated. The branches that leave the main axon are often called collaterals. Certain types of neurons have axons or dendrites coated with a fatty insulating substance called myelin. The coating is called the myelin sheath and the fiber is said to be myelinated. In some cases, the myelin sheath is surrounded by another insulating layer, sometimes called neurilemma. This layer, thinner than the myelin sheath and continuous over the nodes of Ranvier, is made up o thin cells called Schwann cells. Now, how do these things work? Inside and just outside of the neurons are sodium ions (Na+) and potassium ions (K+). Normally, when the neuron is just sitting not sending any messages, K+ accumulate inside the neuron while Na+ is kicked out to the area just outside the neuron. Thus, there is a lot of K+ in the neuron and a lot of Na+ just outside of it. This is called the resting potential. Keeping the K+ in and the Na+ is not easy; it requires energy from the body to work. An impulse coming in from the dendrites, reverses this balance, causing K+ to leave the neuron and Na+ to come in. This is known as depolarization. As K+ leave Na+ enter the neuron, energy is released, as the neuron no longer is doing any work to keep K+ in and Na+ out. This energycreates an electrical impulse or action potential that is transmitted from the soma to axon. As the impulse leaves the axon, the neuron repolarizes, that is it takes K+ back in and kicks Na+ out and restores itself to resting potential, ready to send another impulse. This process occurs extremely quickly. A neuron theoretically can send roughly 266 messages in one second. The electrical impulse may stimulate other neurons from its synaptic knobs to propagate the message. Experiments have shown that the membrane voltage variation during the generation of an action potential is generally in a form of a spike (a short pulse figure 2.2), and the shape of this pulse in neurons is rather stereotype and mathematically predictable. 2.2 SILICON NEURONS Neuromorphic engineers are more interested in the physiological rather than the anatomical model of a neuron though, which is concerned with the functionality rather than only classifying its parts. And their preference lies with models that can be realized in aVLSI circuits. Luckily many of the models of neurons have always been formulated as electronic circuits since many of the varying observables in biological neurons are voltages and currents. So it was relatively straight forward to implement them in VLSI electronic circuits. There exist now many aVLSI models of neurons which can be classified by their level of detail that is represented in them. A summary can be found in table 3.1. The most detailed ones are known as ‘silicon neurons. A bit cruder on the level of detail are ‘integrate and fire neurons and even more simplifying are ‘Perceptrons also known as ‘Mc Culloch Pitts neurons. The simplest way however of representing a neuron in electronics is to represent neurons as electrical nodes. Table 2.1 VLSI models of neurons 2.2.1 Electrical Nodesasneurons The most simple of all neuronal models is to just represent a neurons activity by a voltage or a current in an electrical circuit, and input and output are identical, with no transfer function in-between. If a voltage node represents a neuron, excitatory bidirectional connections can be realized simply by resistive elements between the neurons. If you want to add the possibility for inhibitory and mono directional connections, followers can be used instead of resistors. Or if a current represents neuronal activity then a simple current mirror can implement a synapse. Many useful processing networks can be implemented in this manner or in similar ways. For example a resistive network can compute local averages of current inputs. 2.2.2 Perceptrons A perceptron is a simple mathematical model of a neuron. As real neurons it is an entity that is connected to others of its kind by one output and several inputs. Simple signals pass through these connections. In the case of the perceptron these signals are not action potentials but real numbers. To draw the analogy to real neurons these numbers may represent average frequencies of action potentials. The output of a perceptron is a monotonic function (referred to as activation function) of the weighted sum of its inputs (see figure 3.3). Perceptrons are not so much implemented in analog hardware. They have originally been formulated as a mathematical rather than an electronic model and traditional computers are good at those whereas it is not so straight forward to implement simple mathematics into aVLSI. Still there exist aVLSI implementations of perceptrons since they still promise the advantage of a real fully parallel, energy and space conservative implementation. A simple aVLSI implementation of a perceptron is given in the schematics in figure 3.4. This particular implementation works well enough in theory, in practice however it is on one hand not flexible enough (particularly the activation function), on the other already difficult to tune by its bias voltages and prone to noise on the a chip. Circuits that have really been used are based on this one but were more extensive to deal with the problems. 2.2.3 Integrate Fire Neurons This model of a neuron sticks closer to the original in terms of its signals. Its output and its inputs are pulse signals. In terms of frequencies it actually can be modeled by a perceptron and vice versa. It is however much better suited to be implemented in aVLSI. And the spike communication also has distinct advantages in noise robustness. That is also thought to be a reason, why the nervous system uses that kind of communication. An integrate and fire neuron integrates weighted charge inputs triggered by presynaptic action potentials. If the integrated voltage reaches a threshold, the neuron fires a short output pulse and the integrator is reset. These basic properties are depicted in figure 2.5. 2.3 BIOLOGICAL SIGNIFICANCE OF NEUROMORPHIC SYSTEMS The fundamental philosophy of neuromorphic engineering is to utilize algorithmic inspiration of biological systems to engineer artificial systems. It is a kind of technology transfer from biology to engineering that involves the understanding of the functions and forms of the biological systems and consequent morphinginto silicon chips. The fundamental biological unit mimicked in the design of neuromorphic systems is the neurons. Animal brain is composed of these individual units of computation, called neurons and the neurons are the elementary signaling parts of the nervous systems. By examining the retina for instance, artificial neurons that mimic the retinal neurons and chemistry are fabricated on silicon (most common material), gallium arsenide (GaAs) or possibly prospective organic semiconductor materials. 2.4 NEUROMORPHIC ELECTRONICS ENGINEERING METHODS Neuromorphic systems design methods involves the mapping of models of perfection and sensory processing in biological systems onto analog VLSI systems which emulate the biological functions at the same time resembling their structural architecture. These systems are mainly designed with complementary metal oxide semiconductors (CMOS) transistors that enable low power consumption, higher chip density and integration, lower cost. These transistors are biased to operate in the sub-threshold region to enable the realizations of high dynamic range of currents which are very important for neural systems design. Elements of adaptation and learning (a sort of higher level of adaptation in which past experience is used to effectively readjust the response of a system to previously unseen input stimuli) are incorporated into neuromorphic systems since they are expected to emulate the behavior of the biological systems and compensate for imperfections in t

Sunday, January 19, 2020

Empowering Women Rebuilding the Society

â€Å"To awaken the people, it is the women who must be awakened. Once she is on the move, The family moves, the village moves, the nation moves†. – Pandit Jawaharlal Nehru.Empowerment is multifaceted & multidimensional concept. It is the process by which the powerless gain greater control over the circumstances of their lives. It includes control over resources (physical, human, intellectual, financial) and ideology (beliefs, values, and attitudes), decision making in home, community, society and nation and to gain power to empower herself. It means greater Self confidence and an inner transformation of one’s consciousness that enables one to overcome external barriers to accessing resources or changing traditional ideologies.And also it does not mean to give them power to dominate others or use power to establish their superiority over others. â€Å"Empowerment comes from ‘inside’, from the individuals themselves, it cannot be granted by othersâ⠂¬ . An educated woman knows her responsibility towards their family and society more than a man. In reality women empowerment meant to empower herself not to overpower men. Usually empowerment for women involves opening up more opportunities, greater access to and control over resources and equal participation with men in decision-making.Our society can be viewed as a wall and men & women are analogous to brick and concrete respectively. Women participation in our society has significantly increased since last decades. Their participation is crucial and desirable also to build a peaceful society. There are innumerable hurdles in the women empowerment process. Besides all these beautiful data, the status of women is still not that to which it is meant for. There are still a lot to do for their empowerment.The cases of child marriage, deteriorating maternity rate, anaemic pregnancies, eve teasing, molestation, harassment, rape, exploitation, trafficking, Domestic violence, human rig ht infringement, lax judiciary process to punish the perpetrators, trafficking, unawareness of basic rights etc. are some of alarming issues that a modern woman confronts, when goes out of the home and so many more are such an inventory of non-social impediments which are still prevailing in an alarming rate.Various steps have been taken by the government to prevent such abuses and to empower women. Criminal laws against sati, dowry, female infanticide and foeticide, ‘eve teasing’, rape, immoral trafficking and other offences relating to women have been enacted in addition to civil laws like the Dissolution of Muslim Marriages Act 1939, the Hindu Marriage Act 1955 and other Matrimonial enactments. The Prevention of Domestic Violence Act has been passed in 2005. A National Commission for Women (NCW) has been set up.Other measures by the government include provision of reservation in representation and education, allocation for the welfare of women in the five year plans, provision of subsidized loan facilities and so on. The year 2001 has been declared as the ‘women empowerment year’ by the Government of India and 24th January as the National Girl Child Day. Women participation in all levels of governance is essential for their empowerment and for making the society more humane.Women in India now participate in all activities such as politics, sports, education, media, art and culture, service sectors, science and technology, etc. Indira Gandhi who served as prime minister of India for an aggregate period of 15 years is the world’s longest serving women prime minister and the influence of women in politics is at its apex in the present context strongly supported by the incumbent president of India Pratibha Devi Singh Patil, incumbent Speaker of Lok-Sabha Mira Kumar, incumbent railway minister Mamta Banerji and leader of opposition Sushma Swaraj & Sonia Gandhi leader of the one political party.Besides these names of women holding major authorities in the politics, the other fields are also have women ascendants like Indira Nooyi CEO of PepsiCo, Chanda Koochar CEO of ICICI bank, Shikha Sharma of axis bank and so on. The constitution of India guarantees to all Indian women equality (Article 14), no discrimination by the state (Article 15(1)), equality of opportunity (Article 16) and equal pay for equal work (Article 39(d)).In addition it allows special provisions to be made by the state in favour of women and children (Article 15(3)), renounces practices derogatory to the dignity of women (Article 51(A)(e)) and also allows for the provisions to be made by the state for securing just and humane conditions of work and for maternity relief (Article 42). Man and woman being complimentary physically, emotionally and morally and there is no scope for comparison.One has no existence without the other. They are interdependent. Together their life is whole and meaningful. Each has their own duties, roles and responsib ilities. The 8th of March is Women’s Day. A day to celebrate women and all they have accomplished in their struggle for independence, equal rights and opportunities. It is also the day to show appreciation to all the women dear to you.The 108th Constitutional Amendment Bill, popularly known as the Women’s Reservation Bill which seeks to reserve one-third of seats for women in the Lok Sabha and the State Legislative Assemblies has been a highlight in the recent times & it is highly appreciated in the direction of women empowerment. It was ‘passed’ in the Rajya Sabha on March 9th 2010 one day after international women's day. Though well intended, it can have little, if any, tangible consequences for the real empowerment of women since it does not touch upon the core issues which plague them.The solution must envisage a two-pronged attack, on the one hand, on tradition which is responsible for assigning a low status for women in the society and on the other h and, the outrages perpetrated against them. The proposed ‘Prevention of Sexual Harassment of Women at Workplace’ Bill, 2010 is a good move in that direction. Mass campaigns need to be organized especially in the villages in favour of survival of the female child and provision of human rights for her, including education and health.It is essential to dispel the ghosts of the past and place women on an equal footing with men in order to pave the way for their empowerment, social, economic and educational. The Chinmaya Rural Training Centre (CRTC) was founded by, Swami Chinmayananda, a revered Hindu spiritual leader in one of the most depressed areas of Himachal Pradesh. Sustainable development he believed was only possible if local women, generally belonging to lower castes and tribes, were able to take charge of their own lives and development.Empowering women and thus rebuilding the society would take the nation on a path of greater development as Swami Vivekananda says , â€Å"Countries and Nations which do not respect women have never become great nor will ever be in future†.

Saturday, January 11, 2020

What is the Future of Technology in Education?

As technology advances, so should the world's classrooms. By integrating modern advancements into the education system, opportunities to pursue knowledge are created. Organization becomes easier using cellular devices. Having students carry their own devices into school rather than purchasing new electronics is economical. New ways to make academics easier and more fun have been implemented into new technology. Students that would otherwise remain silent may develop the courage to finally pursue the answers to their questions anonymously. Cell phones should be permitted in classrooms for educational purposes. Having cell phones in an environment that is already geared towards learning opens the opportunity to teach safety and manners for the devices. Teachers can explain in detail to their students how to remain safe on the internet and how to utilize it to its fullest ability. This presents the ideal circumstances for addressing issues such as cyberbullying and online predators as well as how to avoid or properly deal with these topics. The school also can monitor and control what sites students may visit, and it protects them from off-topic or detrimental websites. In addition to safety, instructors may lead lectures on etiquette associated with these devices (http://www.schoolmoney.org). Using technology in the classroom is useful for recording and recalling information. Ken Halla found that his students turned in their homework more often when they were using their devices to remind themselves of their homework. By using the devices as reminders, the students were able to combat their forgetfulness and raise their grades as they had begun to complete their assignments (http://neatoday.org). Another teacher, Sherri Story, uses smart phones to administer group quizzes in which a total of six phones are used, so all the students get a chance to participate and work together. She finds that the students have all the information they need at their fingertips and can find answers that even she does not know almost immediately. The students can share notes and assignments that their classmates may have missed in a previous period, which allows the absent student just as much time to work on a given topic as his peers and no excuse for not completing assignments (https://pilotonline.com). Implementing a ‘Bring Your Own Device,' or ‘BYOD,' policy can be cost-effective for schools that are underfunded. For schools that cannot afford many computers; laptops; or tablets, having students bringing in their own devices, even if they must be shared, saves the school from expending money that it does not have (http://neatoday.org). Additionally, a study, led by Joshua Littenberg-Tobias and Vincent Cho, showed that when students' devices were utilized for learning in Boston College, the teachers saw improvement in the learning abilities of their students (https://www.sciencenewsforstudents.org). Because the use of technology has grown exponentially over the years, the quantity of educationally focused applications has grown. Apps, such as Remind101, are used to remind students of upcoming assignments while websites like Poll Everywhere can be used to determine what materials a class needs to review before assessments and what it does not. Other apps, such as dictionary or reference apps are quick and easy to use, cutting down on the time needed to search for information so that more time may be spent on learning (http://www.nea.org). Certain apps such as Kahoot are tailored to make learning in all subjects enjoyable, entertaining, and like a game, which helps some students learn better than simply sitting through a lesson without understanding (https://education.cu-portland.edu). Cellular devices may be used by children that would otherwise not ask for assistance. They may by utilized by disabled children to communicate with everyone else and give them a sense of normality. They may also be used by students who are too shy or nervous to ask for help in front of their entire class. These students may fear that they will be considered stupid if they ask for help, so the anonymity gives them the confidence they need to receive the additional attention they need. Moreover, when students are placed into groups to complete projects, none of them are singled out because they do not own a smartphone. All students in a group work together, using a single device (https://www.edutopia.org). Permitting cell phones in an academic setting would be a wise decision, despite its drawbacks, which are easily remedied. Simply introducing them into an academic area creates a learning opportunity for safety and proper usage. The technology makes a place to store information so that it can be retrieved quickly for convenient use. Having students bring in their own devices reduces the amount of money spent in the tech department and is cost-effective. Because of the frequency smartphones are used, a plethora of applications have been created to enhance an individual's academic standpoint. Students, teachers, and administrators should work together to apply already successful techniques around the globe.